
Lecture 7 - 2/6/2024 (Last Updated 1/27/2024)

This week in lecture we started to shift from procedural programming
principles to object oriented programming. This is the main benefit of
using Java compared to other programming languages. Object oriented
programming in Java - for purposes of this course - relies on you defining
your own data types. Like you saw and heard in lecture. Classes are
blueprints used to construct objects. When creating classes from this
point forward there is a few things that you’ll need to make sure you
understand and include:

1. Instance Variables
2. Constructor(s)
3. Mutators and Accessors

Instance variables are variables that belong to each instance of the Class
that you instantiate, so like in lecture you can instantiate multiple
BankAccount objects, each with their own balance, account number and name.
All instance variables you create shall be marked private, this makes it
so no outside entities can directly modify or access these values without
using the mutators or accessors that you define.

Constructors are special methods that have no return type in the method
signature - including void - the job of the constructor is to initialize
the instance variables for that instance of the object. You can define
multiple constructors for the same class as long as the method signatures
are different.

Mutators and Accessors are the types of methods that you can write in
Java. Mutator methods, modify the instance variables and do not return
anything and are void. Examples of mutators are the deposit() and
withdraw() methods from the BankAccount class from lecture. Accessor
methods do not modify the instance variables but instead return an
instance variable to the user. An example would be the getBalance() method
from the BankAccount class from lecture.

At this point you should be able to define your own methods and use them
in Java the general form for defining a method is as follows:

<access modifier> <additional modifier> <return type>
methodName(parameterList){}

An example would be as follows:

public static void main(String[] args){}

The access modifier is public, the additional modifier is static, the
return type is void, the method name is main and we have a single
parameter called args which is of type String[]. This is the form which
you will use to define all methods going forward.

Whenever we write our own data types we never run any actual code in the
same file, we write another java file that uses the Class we previously
wrote in order to execute code in this new file. This is referred to as a
driver class, tester class, and possibly a leader class. In lecture you
saw this as the BankTest.java file.

Last week you were reminded of the basic primitive types but today we
introduced the rest of them today along with the amount of memory they
take up, a chart reviewing that is down below:

Data Type Bytes Required Bits (Bigits) Required

byte 1 byte 8 bits

short 2 bytes 16 bits

int 4 bytes 32 bits

long 8 bytes 64 bits

float 4 bytes 32 bits

double 8 bytes 64 bits

boolean 1 byte 8 bits

char 2 bytes 16 bits

Lecture 8 - 2/8/2024

Not many new concepts were covered in lecture today, so this section will
be short but you did learn some valuable new concepts today. When we
invoke a method such as the following two examples:

Integer.parseInt(“23”);
MyAccount.withdraw(100);

Today you learned that there are explicit parameters and implicit
parameters: Explicit parameters are the parameters found within the
parentheses so for our examples above “23” and 100 are explicit
parameters. Implicit parameters are the objects calling the method meaning
implicit parameters only appear in non static contexts. Meaning while
MyAccount is an implicit parameter, Integer is not since Integer is a
static class. This static keyword is the same one you write every time you
write a main method in Java.

Today you also learn that Strings are immutable meaning they cannot be
changed once they are created, being immutable is not the same as being a
constant. You can reassign immutables all day long. Here is an example:

String s = “1004 is ”;
s += “great”;

The String s reads as you would expect “1004 is great” but it is not the
same s object that we initially initialized s with. That is a separate
object that no longer has a reference to it. We have access to one object
but create two. In lecture today you also saw Integer.parseInt(). This is
a method that takes in a String as input and returns an int version of the
argument assuming the argument is valid. In the event you had an int and
needed to convert it to a String, you could use Integer.toString() which
does as you think it would.

Finally a brief review of the boolean operators that you have seen so far:
1. && is the logical AND operator | A && B evaluates to true iff A and B

are true
2. | | is the logical OR operator | A | | B evaluates to true iff A or B

is true
3. ! is the logical NOT operator | !A evaluates to true iff A is false

